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Atmospheric Methane Characteristics in AMY, Korea, 2012 

Haeyoung Lee and Bok-Haeng Heo 
Korea Global Atmosphere Watch Center 

Korea Meteorological Administration 

 
The Fifth Assessment Report (AR5) of the United Nations Intergovernmental Panel on Climate 

Change (IPCC) published in September 2013 reported that there is a clear human influence on the 
ongoing global warming. In addition, atmospheric concentrations of carbon dioxide, methane, and 
nitrous oxide have increased to unprecedented levels in at least the last 800,000 years.  

Especially, even though methane is the most important greenhouse gas next to carbon dioxide, the 
relative contributions to various processes that produce methane are uncertain while the sink is quite 
well understood indicating it arises primarily from the activity of hydroxyl radical which is involved 
in photochemical oxidation reaction.  

Asia regions are well known for the main source of methane due to rice paddies, plateaus during 
monsoon, and tropical wetlands [1], [2], [3], [4]. For Korea, methane is released mainly from agriculture 
(40% methane emissions in total) and energy sector (30%) [5]. In Korea, methane studies are focusing 
on only emission source interestingly. However, atmospheric methane studies are very important to 
understand the growth rate because they reflect the global methane budgets which delicately balance 
large sink and sources at present. 

The Korean Peninsula is not only located in downwind area from Asia continents due to westerly 
wind, but also affected by seasonal flow patterns indicating the main wind stream is southwesterly in 
spring, southerly in summer, easterly in autumn, and northwesterly in winter, respectively. Especially, 
Anmyeondo (AMY) is in western part of the Korean Peninsula and one of GAW (Global Atmosphere 
Watch) regional stations that AMY could monitor the methane not only from local area, but also from 
other Asia continents. In here, the evidence is presented from atmospheric trajectories that explain 
some of synoptic and seasonal scale variability in methane by relating it to flow patterns and locations 
of source and sink in AMY.  

At AMY, methane had been measured from1999 to 2003 from the inlet, 67m above the sea level, 
and has been measured from 87m using 40 m tower since 2004. Methane has been monitored using 
GC-FID (Gas Chromatography Flame Ionization Detector, Agilent 6890N) and calibrated with one 
point standard gas which has similar concentration with background concentration every 6 hours since 
1999. When the data from GC-FID were compared with those from CRDS (Cavity Ring Down 
Spectrometer, model 2301, Picarro) which was calibrated with two point standard gases every two 
weeks, the values from GC-FID are in good agreement with those from CRDS as shown in Figure. 1. 
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Figure 1. Temporal variation of hourly mean of methane measured by GC-FID (red spots) and CRDS 
(black spots) in 2012, AMY, Korea (left) and the scatter plot of CRDS and GC-FID using hourly 
mean concentrations (right). 

 

The seasonal mean concentrations of methane were high in the order of autumn>winter> 
summer>spring (Table 1.). Methane shows the lowest concentration in summer due to the OH radical 
and high mixing height generally. However, mean concentration of methane in summer at AMY was 
higher than that of spring, similar with winter’s and its standard deviation was the highest indicating 
maximum concentration was the highest (2551 ppb) and the minimum concentration was the lowest 
(1773 ppb). 

 

Table 1. The results of methane measured with GC-FID at AMY in 2012 

Conc.(ppb) Spring (MAM) Summer (JJA) Autumn (SON) Winter (DJF) 

Mean 1937 1953 1961 1954 

Std. 37 116 67 43 

Median 1927 1926 1940 1941 

Maximum 2138 2551 2407 2179 

Minimum 1836 1773 1826 1792 

N 1675 2172 2183 2161 

 
To understand its characteristics in the summer of AMY, ten-day backward trajectories were 

analyzed using FLEXPART (from Norwegian Institute for Air Research in the Department of 
Atmospheric and Climate Research). According to the back trajectory analysis, three cases were 
categorized into: (a) when it was affected by North Pacific air mass directly, it indicated the baseline 
with lower concentration than other periods (Figure. 2(a)). (b) Under the stagnated conditions, high 
concentration of methane (daily mean of 2050 ppb) comes from the agriculture around the stations 
[6],[7] as showing no relationship between methane and carbon monoxide (Figure. 2(b)) (c) There was 
another case of high concentration when it was affected by long-range transported air mass from Asia 
continent. Carbon monoxide and methane trends are similar in that case (Figure.2(c)). 
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(a) 

 
(b) 

 
(c)  

 

Figure 2. The ten-day backward trajectory of FLEXPART (left column) and CO and CH4 
concentrations from GC-FID and CRDS respectively (right column) in (a) the low concentration case, 
(b) the high concentration case under the stagnated condition and (c) the high concentration case due 
to long-range transported air mass from the Asia continent during summer period, 2012, AMY. 
 
 
 



  

4 Asia-Pacific GAW Greenhouse Gases Newsletter  Volume No. 4, 2013 
 

To remove the effects of local sources under the stagnated condition from the data, hourly means 
with wind speed above 6m/s were selected and showed in Figure. 3. It indicated the high 
concentration in the order of winter>autumn>spring>summer, indicating it was similar to the global 
seasonal variation. From summer to winter, methane showed higher level with easterly wind, 
compared to other wind directions. However, spring period showed the highest concentration with 
south westerly wind that reflects the methane derivation from the Asian continent. Summer had the 
large variation of methane by wind direction due to strong north pacific air mass from sink region 
while this variability was reduced with the cessation of the north pacific wind from methane sink 
region in winter period. 

 

 
Figure 3. Methane concentrations from GC-FID by the wind direction in spring (green), summer 

(blue), autumn (orange), and winter (red) when the wind speed was above 6m/s. 

 
The seasonal mean methane showed the high concentration in the order of autumn>winter> 

summer>spring, while it showed winter>autumn>spring>summer with the similar pattern of global 
methane after removing the stagnated condition. Therefore, local sources would be the most important 
factor to select the background concentration from the data at AMY. Even though the local effects 
were removed from the data, it implied that changes in the methane linked to air flow patterns. Year-
to-year changes in transport could affect estimate of the methane growth rate and the study of long 
range transported methane is needed to understand its growth rate in the future. 
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NOAA Measurements of Long-lived Greenhouse Gases 

Edward J. Dlugokencky1, Andrew Crotwell1,2, Ken Masarie1, James White3, Patricia Lang1, 

and Molly Crotwell1,2 

1. National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring 

Division, Boulder, Colorado, USA, 2. CIRES, Univ. of Colorado, Boulder, CO, USA, 3. INSTAAR, Univ. of 

Colorado, Boulder, CO, USA  

 

Introduction 

NOAA Earth System Research Laboratory, Global Monitoring Division, Carbon Cycle Group 
(CCG) began monitoring CO2 from discrete flask samples in the late-1960s, and has since added 
measurements of other important long-lived greenhouse gases and related tracers, including isotopes 
through collaboration with the University of Colorado, INSTAAR, from these flasks. Our group also 
has programs to measure CO2 and CH4 continuously at NOAA’s background observatories, measure 
CO2 and other tracers from tall towers, and measure long-lived greenhouse gases (LLGHG) from 
discrete samples collected on light aircraft. Our group, in collaboration with another group in our 
division, has also developed a standards program that provides SI-traceable standards to our NOAA 
programs and the WMO GAW community. Here some key results from CCG’s global cooperative air 
sampling network are given for CO2, CH4, N2O, and SF6. 

 

Sampling and analysis methods 

Air sample pairs are collected approximately weekly in 2.5 L flasks from ~60 sites (as of 2013) in 
NOAA’s global cooperative air sampling network [1] (also http://www.esrl.noaa.gov/gmd/ccgg/flask. 
html). Flasks are flushed and pressurized to ~1.2 atm with a portable sampler. Samples are collected 
under conditions when air is representative of large, well-mixed volumes of the atmosphere to 
facilitate comparison with simulations from chemical transport models that have relatively large grid-
scale resolution. Analytical methods are as follows: CO2: NDIR; CH4: GC/FID; N2O/SF6: GC/ECD. 
All instrument responses are calibrated with standards on the respective WMO GAW mole fraction 
scales maintained at NOAA and reported as dry-air mole fractions (CO2 and CH4 data path: 
ftp://aftp.cmdl.noaa.gov/data/trace_gases/<co2 or ch4>/flask/surface/). To calculate means representative of 
large spatial scales, data from a subset of globally-distributed remote boundary layer sites were fitted 
with curves to smooth variability with periods less than ~40 days [1]. Synchronized points were 
extracted from these curves at approximately weekly intervals and smoothed as a function of latitude 
to define an evenly spaced matrix of surface LLGHG mole fractions as a function of time and latitude. 
This matrix was used to calculate global and zonal averages.  
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Results 

CO2: Since 1750, ~385 billion tons of carbon has been emitted into the atmosphere as CO2 by 
combustion of fossil fuels and production of cement. About half of these emissions have occurred 
since the mid-1970s [2]. This carbon is partitioned into three mobile reservoirs: atmosphere, oceans, 
and terrestrial biosphere. Atmospheric CO2 has increased from about 278 ppm (ppm=μmol mol-1) at 
the start of the industrial revolution to more than 390 ppm today. The atmospheric increase contributes 
~1.85 W m-2 of radiative forcing (see e.g., http://www.esrl.noaa.gov/gmd/aggi/). CO2 that enters the 
ocean increases the acidity (decreased pH) of surface waters through carbonate chemistry. This can 
have detrimental effects on organisms that contain calcium carbonate, for example the shells of 
plankton near the bottom of the ocean food chain and corals. Increasing acidity will cause calcium 
carbonate to dissolve, destroying these creatures.  

The fate of fossil fuel derived CO2 is important to climate, because different reservoirs have 
different residence times and different susceptibilities to human interference. Therefore much current 
carbon cycle research is dedicated to understanding the partitioning of fossil CO2 into the ocean and 
terrestrial biosphere. One method used to understand the partitioning of fossil CO2 between biosphere 
and ocean is stable C isotopes in CO2. Figure 1 shows CO2 mole fraction (top panel) and δ13C in CO2 
from weekly samples at Cape Kumukahi, Hawaii. The long-term decline in δ13C results from fossil 
carbon being depleted in 13C relative to atmospheric CO2. There is a seasonal cycle in both CO2 mole 
fraction and δ13C, but they are of opposite phase. 
As the biosphere takes up CO2 in the spring and 
summer, it favors 12C; this enriches the 
atmosphere in 13C (less negative δ13C values). 
Inter-annual variation in the balance between 
photosynthesis and respiration is seen in the subtle 
variations in the long-term δ13C trends. For 
example, air temperatures were cool in 1992 
because of the short-lived effect of aerosols after 
the eruption of Mt. Pinatubo. This likely resulted 
in decreased respiration relative to photosynthesis, 
and offset the decreasing trend in δ13C from fossil 
fuel combustion. The opposite effect, an increase 
in the ratio of respiration to photosynthesis is seen 
in warm years such as 1998. 

The globally averaged atmospheric CO2 mole fraction in 2012 was 392.52±0.10 ppm, and it 
increased 2.43±0.09 ppm (see http://www.esrl.noaa.gov/gmd/ccgg/trends/). Despite fossil CO2 
emissions being predominantly in the Northern hemisphere, the rate of increase of atmospheric CO2 is 
approximately the same everywhere. 

Figure 1.(a) CO2 dry air mole fractions (NOAA 

ESRL) and (b) δ13C in CO2 (University of 

Colorado, INSTAAR) from weekly samples 

collected at Cape Kumukahi, Hawaii. 
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CH4: The contribution of CH4 to anthropogenic radiative forcing, including direct and indirect 
effects, is about 0.7 W m-2. While ~2/3 of its emissions are from anthropogenic sources, natural 
emissions of CH4, predominantly from wetlands, are a potential strong climate feedback because 
emission rates depend strongly on temperature and precipitation. In the Arctic, where surface 
temperatures are increasing at twice the global rate, there is the potential for increases in CH4 
emissions from wetlands. The Arctic also contains large stores of organic carbon in permafrost and in 
hydrates, but increases in emissions from these climate-sensitive sources have not yet been detected in 
atmospheric observations. Anthropogenic sources 
such as biomass burning are also susceptible to 
changing climate through changes in precipitation. 
Dry conditions during the strong El Niño of 1997 
and 1998 resulted in an estimated 50% increase in 
CH4 emissions from biomass burning in the tropics 
and high northern latitudes relative to normal [3]. 

After a decade of near-zero growth, atmospheric 
CH4 began increasing again globally in 2007 [4], [5], 
as shown in Figure 1. The increase was driven by 
increased Arctic and tropical emissions. CO 
measurements in the same air samples indicate little 
contribution from enhanced biomass burning since 
2007. Likely drivers for increased emissions in 2007 
are anomalously high temperatures and precipitation 
in wetland regions, particularly in the Arctic. Since 
2007, atmospheric CH4 continues to increase at ~6 ppb yr-1. Despite continued warmth in the Arctic, 
emissions there returned to normal levels in 2008. The causes of the continued global increase are not 
clear, but greater than average precipitation in tropical wetland regions and increased anthropogenic 
emissions are likely the largest contributors. Unfortunately, the current atmospheric CH4 observing 
network is not sufficient to determine with certainty the causes of the CH4 increase since 2007. 

N2O: Nitrous oxide contributes the third-most radiative forcing by LLGHGs since 1750, and its 
stratospheric ozone depletion potential-weighted emissions are now largest of all ozone depleting 
substances. Based on long-term continuous measurements at NOAA observatories, it has increased at 
~0.78 ppb yr-1 for more than 30 years (http://www.esrl.noaa.gov/gmd/hats/combined/N2O.html). 
Because N2O has a long lifetime (~130 yr) and its emission rates are small, spatial gradients are small. 
This, in turn, requires a relatively high degree of internal consistency across measurement networks, if 
the observations are going to be used with a chemical transport model to calculate emissions at 
regional to continental scales. CCG has been measuring N2O in discrete air samples since mid-1997. 
Despite poorer repeatability of the CCG N2O measurements from flasks than from in situ analyzers, 
the greater spatial coverage of the CCG measurements has helped improve knowledge of the large 

 

 

 

 

 

 

 

 

Figure 2. (a) Solid line shows globally 

averaged CH4 dry air mole fractions; dashed 

line is a deseasonalized trend curve fitted to the 

global averages. (b) Instantaneous growth rate 

for globally averaged atmospheric CH4 (solid 

line; dashed lines are uncertainties at 68% 

confidence limit). 



  

Asia-Pacific GAW Greenhouse Gases Newsletter  Volume No. 4, 2013 9 
 

scale distribution of emissions [6]. In future, isotopic measurements of N2O from CCG discrete 
samples may further improve our knowledge of the global N2O budget. 

SF6: Sulfur hexafluoride is emitted almost entirely from anthropogenic processes. Because its 
lifetime is extremely long (~3200 yr) and it is well-mixed in the atmosphere, observations from 
relatively few sites can be used to estimate total global emissions. Such estimates show that emissions 
reported to the UNFCCC by Annex I countries are substantially underestimated [7]. As with N2O, CCG 
measurements are useful in understanding the spatial patterns of SF6 emissions. Additionally, the 
observations have been used to test transport in atmospheric chemical transport models. For example, 
Peters et al. [8] used CCG SF6 measurements to show that the commonly used model “TM5” 
overestimates the latitudinal gradient of SF6 by 19% and that mixing within the planetary boundary 
layer in the model is too slow. 
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Ground-based monitoring of greenhouse gases (CO2, CH4) along 

the west coast of India: Role of Indian summer monsoon 

Yogesh K. Tiwari1, Ramesh Vellore1, K. Ravi Kumar1, and Marcel V. van der Schoot2 
1Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India 

2CSIRO Marine and Atmospheric Research, Aspendale, Australia 

 
The paucity of ground-based greenhouse gas (GHG) monitoring over the Indian subcontinent has 
been posing a stringent limitation to the estimates of CO2 sources and sinks. According to a recent 
report published by the Ministry of Environment and Forests (MoEF), Government of India 
(http://moef.nic.in/downloads/public-information/Report_INCCA.pdf), the total GHG emissions in 
India have substantially increased from 1252 to 1905 million tons during 1994-2007 at an annual 
growth rate of 3.3%. With limited ground-based observational resources, it was seen that some sectors 
such as the cement production, electricity generation, and transport have provided greater contribution 
to this significant growth by 6%, 5.6%, and 4.5% respectively during this time. Estimates of total 
fossil-fuel CO2 emissions from Indian subcontinent are: 189 TgC in 1990, 324 TgC in 2000, 385 TgC 
in 2005 and 508 TgC in 2009 with an increasing rate of about 7% per year during the past decade[1] 
[source: Carbon Dioxide Information Analysis Center (CDIAC), USA].  One of intriguing sink 
factors is that some of the GHG emissions are likely to be compensated by vegetation uptake over the 
Indian subcontinent[2],[3] which still remains an unresolved issue that warrants immediate attention. In 
response to land-sea thermal contrast, the largest volume of precipitation over the subcontinent is 
observed during the monsoon months [June through September (JJAS) in summer and December 
through February (DJF) in winter[4], [5], [6]. As the southwesterly moist-laden winds during the Indian 
summer monsoon initially arrives at the west coast of India and then spreads over the subcontinent, 
the maritime transport mechanisms are imperative for accurate source region estimates. The influence 
of the continental air mass transport during DJF due to seasonal wind reversal is also equally 
important.  More importantly, the GHG residence times over the oceanic and continental regions 
during their transport are of great importance. Therefore, the transport mechanisms associated with 
the monsoon meteorology in the vicinity of the complex mountainous regions constitutes the focal 
point of this study to understand the role of GHG transport and sinks in the west coast of Indian 
subcontinent using observational and modeling resources. 
Currently, there are two operational stations along the west coast of India, one at Cape Rama (CRI), 
Goa (15.08° N, 73.83° E, elevation =50 m asl) (Fig. 1) that has a long observational record for more 
than a decade. The CO2 seasonal behavior at CRI has clear signals driven by monsoon meteorology 
and terrestrial ecosystem variability[7], [8].Another GHG monitoring site located over the Western 
Ghats mountains is Sinhagad (SNG; 200 km from the Arabian sea; 73.75o E, 18.35o N, elevation = 
1600 m asl) which is operational since 2010 that concatenates the CO2 routine monitoring along the 
west coast of India (Fig. 1)[9].Similar to the features observed at CRI, SNG also consistently indicates 
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Establishment of Continuous Greenhouse Gas Observation Capacity 
in Northern Vietnam through a Swiss-Vietnamese Collaboration 

Duong Hoang Long 

National Hydro-Meteorological Service,  

Science-Technology and International Cooperation Dept., Hanoi, Vietnam 

 

I. Introduction 

The project Capacity Building and Twinning for Climate Observing Systems (CATCOS) [1]that will 
last from mid-2011 to 2013. The project is supported by the Swiss Agency for Development and 
Cooperation (SDC) with the Federal Office of Meteorology and Climatory MeteoSwiss as the 
coordinating partner on the part of Switzerland. The project addresses the need to improve climate 
observations world-wide, but particularly in developing countries and countries in transition. The 
Project focuses on atmospheric observations and will be implemented by the Paul Scherrer Institute 
(PSI, for the aerosol part), and by the Swiss Laboratories for Materials Testing and Research (EMPA, 
for the atmospheric trace gas part). 

The International partners and beneficiaries of this project are countries in South America, in 
Africa, and in Asia. These are represented by the Bureau of Meteorology, Climatory and Geophysics 
(MMKG, Indonesia), the Dirección Meteorológica de Chile (DMC, Chile), the Kenya Meteorological 
Department (KMD, Kenya), and the National Hydro-Meteorological Service (NHMS, Vietnam). This 
report only focuses on the Establishment of Continuous Greenhouse Gas Observation Capacity in 
Northern Vietnam belong to the CATCOS project. 

 

II. Preparation steps for the project in Vietnam  

2.1 Expert Meeting 

A first meeting took place at NHMS on 13 June, 2012. The meeting was chaired by Deputy 
Director General of NHMS Mr. Nguyen Van Tue, who also introduced NHMS. Dr. Jörg Klausen then 
introduced MeteoSwiss, the Global Atmosphere Watch, and the CATCOS project in three 
presentations. Dr. Nicolas Bukowiecki introduced technical aspects and requirements of the CATCOS 
project. During the ensuing discussion, the objectives of the visit of the Swiss delegation in Viet Nam 
were approved by the chair. 

2.2 Site visit 

The Swiss delegation then visited the Hydro-Meteorological and Environmental Station Network 
Center including their laboratories (Calibration, Analysis) and the automatic environmental station in 
Ha Noi. Subsequently, the delegation was introduced to the Vietnam Institute of Meteorology 
Hydrology and Environment (IMHEN).  

The delegation visited six locations in Northern Vietnam suggested by NHMS and IMHEN:  
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 Mau Son Climate Station   
 Son La Climate Station   
 Pha Din Climate and Radar Station   
 Sa Pa Agr ometeorological Station  
 Sa Pa Climate Station   
 Hoang Lien (previous climate station, re -establishment foreseen by 2020)  

The suitability of these locations for representative atmospheric composition measurements was 
assessed in terms of  

 Geography ( topography, land cover)  
 Climatology (available meteorological and atmospheric composition data)   
 Existing infrastructure   

 

 
Figure 1.Overview of Sites Visited 

 

 

2.3 Site selection 

The Pha Din Climate (and future Radar) Station was identified to be the most suitable location 
to establish atmospheric measurements and was recommended for CATCOS and with a view of 
submitting this station to WMO as a Regional GAW station. Another, potentially suitable site located 
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on a mountain saddle, namely Hoang Lien, could not be recommended at this point be-cause of a 
complete lack of infrastructure. The station Mau Son was initially considered because of its remote 
location on a hill top close to the Chinese border. However, upon inspection of the site, it became 
apparent that the anthropogenic activity in the vicinity of the station is likely to pro-duce excessive 
local emissions that would be too difficult to discern from the regional signal. Likewise, the stations at 
Son La and Sa Pa are very suitable for monitoring rural/urban back-ground, but were considered not 
to be clean enough for climate observations. The last candidate, Cuc Phuong, was initially considered 
but was eventually not visited by the delegation because of its location in a large forest reserve 
situated in a depression in the Red River Delta. The site is probably very useful for biosphere 
monitoring and research, but is likely not suitable for climate observation.  

 

Ⅲ. Detailed information for Pha Din (ĐèoPhaĐin)Climate Station 
Pha Din station is a rural site in a hilly forested area in Northern Vietnam. Currently, Pha Din is a 

climate station with basic meteorology. The upcoming installation - planned for early 2014 - will 
enable the continuous in-situ ground-based observation of carbon dioxide, methane, carbon monoxide 
and ozone next to the new monitoring of optical properties of aerosols. Moreover, the project strongly 
focuses on know-how transfer, training and capacity building to ensure a sound and long-term 
operation of the equipment by NMHS also beyond the end of the project. 

3.1 General description  

The station represents a Level 3 NHMS meteorological station, providing manual readings every 6 
hours for wind and wind speed. The station has been moved from a nearby site to this site in April 
2012, because a radar tower is planned to be operational at the same site. The radar tower is already 
built, but the radar instrumentation itself is currently in the bidding process, operation is scheduled not 
before 2015. The station is permanently occupied with 3 staff persons (see station contacts above), 
recruited from local residents. Additional 5-10 technical staff persons will be on site by the time the 
radar will be operational. Staff housing is provided for 3-4 persons.  

Pha Din is reachable all year long via a paved mountain road (10 h by car from Ha Noi via Son La). 
Airports in Son La and Dien Bien Phu with daily connections from Ha Noi (subject to changes). After 
heavy rainfalls the site the roads may be blocked due to landslides. 

3.2 Meteorological conditions and geography  

Prevailing wind directions: NE in winter and SW in summer (according to station staff)  
Temperature: 25-30 ˚C in summer and down to 3 ˚C in winter. No snow or ice in winter.  
Rainfall and humidity: The site is in clouds a considerable fraction of the year with a 

correspondingly high relative humidity all year long.  

3.3 Infrastructure  

Building: Standard NHMS building for meteorological stations. Brick or concrete, corrugated iron 
roof. Concrete ceiling approx. 10 cm (minimum). A room for the instruments is available in this 
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building. Available space: 5.2 m x 3.6 m, ceiling height approx. 4 m. One front door, one back door. 
Needs to be fitted with air conditioning. 

Power: 380 VAC for the radar tower, meteorological station runs with 220 V / 50 Hz, Site has a 
high priority for power supply, power outages are rare. Surge protection advisable (also for data 
line). 
Internet connection: Currently 3G, ADSL is planned by the time the radar will be operational.  
Accommodation: Possibility to stay directly at the site (tent, in the lab). Staff can organize food.  
Gas inlets: 1. Next to aerosol inlet, 2. Meteo mast (50+10 m from aerosol inlet), 3. Radar tower 
potentially suitable, but belongs to different governmental department  
Aerosol inlet: New roof transition necessary, inlet should be at least 1.5 m above roof.  

 

IV. COMPONENTS AND MAJOR ACTIVITIES OF PROJECT 
- Preparing the infrastructure for equipment installation; 
- Equipment installation for GAW station in Viet Nam with the configuration as following [3]: 

+ Nephelometer Aurora 3000, Ecotech; 
+ Aethalometer AE-31, Aerosol d.o.o 
+ Picarro 2401 CO/CO2/CH4/H2O analyzer 
+ NOAA Standards incl. Regulator 

- Training activities 
 

V. PROJECT APPROVAL 

On 27 may 2013, Memorandum of Understanding (MOU) between Federal Office of Meteorology 
and Climatology MeteoSwiss and National Hydro-Meteorological Service of Viet Nam (NHMS) with 
reference to the project CATCOS has been signed. On 09 September 2013, the project is approved in 
the Decision No. 1692/QĐ-BTNMT by the Minister of Ministry of Natural Resources and 
Environment (MONRE, Viet Nam). 

 

VI. CONSTRUCTION 
At present, NHMS is preparing for the lab, air-conditioner, electricity, internet and sample mast.  

The instrument is packed and shipped to Viet Nam in 4 December 2013. According to the announce
ment of Swiss Embassy, the instrument expected to Viet Nam in 22 December 2013.Installation work
s scheduled for February 2014. The Viet Namese side will transport equipment to Pha Din and c
ollaboration with Swiss specialist to install the equipment. 

The Pha Din Global Atmospheric monitoring station will go into operation in March 2014. 
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Preliminary Results of Greenhouse Gases Observed at 
Lulin Atmospheric Background Station (LABS), Taiwan 

Chang-Feng Ou-Yang1,2, Neng-Huei Lin1, Jia-Lin Wang2, and Guey-Rong Sheu1 

1. Department of Atmospheric Sciences, National Central University, Chungli-320, Taiwan 

2. Department of Chemistry, National Central University,Chungli-320, Taiwan 

 

Introduction 

The island of Taiwan is situated in a unique position in East Asia in terms of observing pollution 
outflows from Southeast Asia and the Asian continent. Regional meteorological conditions are 
favorable for the transport of air pollutants, such as dusts, acidic pollutants, and biomass burning 
emissions, from upwind source regions to Taiwan [1], [2]. Thus, a high-elevation baseline station, Lulin 
Atmospheric Background Station (LABS), was established to measure baseline air pollutants and to 
study the atmospheric transport patterns. Official operation of LABS began on April 13, 2006, 
following the operating protocols of UN/WMO/GAW and US/NOAA/GMD sites. This station offers a 
great deal of opportunities to investigate the atmospheric chemistry of trace gases, aerosols, 
precipitation, mercury, and radiations, providing a distinctive contrast of atmospheric changes and 
impacts by a variety of air masses originated from relatively clean to emission source regions.  

 

Site Description and Instrumentation 

Lulin Atmospheric Background Station (23.47°N, 120.87°E; 2,862 m a.s.l.) is a two-story building 
(Figure 1) sitting on the summit of Mt. Front Lulin (Figure 2) in the Yu-Shan National Park in central 
Taiwan. The Lulin Astronomy Observatory is also located on the summit. There are no known point 
emission sources at the summit or in the surrounding area. The station is frequently within the free 
troposphere and is therefore an ideal site for making regional background air measurements. All of the 
instruments were placed on the second floor of the building, with the air intake line extruding to the 
roof and the inlet point approximately 10 m above ground. The instrument room is air-conditioned to 
keep constant air temperature around 25 ℃. More detailed descriptions of the LABS can be found in 
the literature [3]. 

Flask air sampling of GHGs were performed once a week by a NOAA/GMD’s PSU at LABS and 
Dongsha Island (20.70˚N, 116.73˚E; 8 m a.s.l.) since August 2006 and March 2010, respectively, 
measuring CO2, CH4, CO, N2O, SF6, H2, and isotopes (CO2

13C and CO2
18O). A cavity ring-down 

spectroscopy (CRDS, Picarro G1301) analyzer continuously measures CO2 and CH4 at LABS since 
March 2011. Seven tertiary standard cylinders of CO2 (369.86 ppm, 391.99 ppm, 409.23 ppm, 516.30 
ppm) and CH4 (1599.74 ppb, 1801.44 ppb, and 2024.64 ppb) purchased from NOAA/GMD were 
considered as our primary to verify the CO2 and CH4 mixing ratios in the working standards. 
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Figure 1. Photo of the LABS Figure 2. Aerial photo of the summit of Mt. Front Lulin 

 

These working standards were then sent to the LABS for calibrating the CRDS analyzer on-site. 

 

Results and Discussion 

Temporal variations of CO2 and CH4 at LABS are illustrated in Figures 3 and 4, respectively. The 
mean mixing ratio of CO2 is 387.9±9.1 ppm based on the results of 7-year flask air samples, while the 
mean CH4 level is calculated to be 1857.7±37.9 ppb for the same period. The springtime maximum 
was most likely caused by the long-range transport of air masses from Southeast Asia, where biomass 
burning was intense in spring. In contrast, a greater Pacific marine influence contributed to the 
summertime minimum.CO2evidenced that in spring the excess CO2 from biomass burning permeates 
the Western Pacific at an elevation of about 3 km. Until late fall, vegetation growth on land 
completely dominates the CO2 signal as clean and stable as measured in Hawaii. The annual maxima 
and minima of CH4 were seen in March and July, respectively, as well as other air pollutants such as 
CO, O3, and GEM (gaseous elemental mercury) [3], [4].  

As the diurnal cycles of CO2 and CH4 shown in Figure 5, a daily minimum of CO2 with lager 
standard deviations was observed during daytime while the photosynthesis process is likely to be 
pronounced. In order to avoid the influences of CO2uptakesby plants surrounded, the sampling time 
was therefore adjusted to early morning (before 7 A.M.) since mid-September of 2012 (Figures 3 and 
4). The diurnal pattern of CH4 (Figure 5) is similar to that of other primary air pollutants (e.g. CO, 
GEM and PM10), which is presumably the result of mountain-valley circulation as indicated by our 
previous studies [4].  
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Figure 3. Time-series CO2 observed at LABS since August 2006. Open squares represent the 
preliminary results of NOAA/GMD flask air samples. Green lines represent the continuous CO2 data 

measured by CRDS. 
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Figure 4. Time-series CH4 observed at LABS since August 2006. Open squares represent the 

preliminary results of NOAA/GMD flask air samples. Brown lines represent the continuous CH4 data 
measure by CRDS. 
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Figure 5. Diurnal patterns of CO2 and CH4 observed at LABS, averaged from March 2011 to July 2013. 

 

LABS provide comprehensive and informative results of GHG measurements at 3 km elevation in 
the Western Pacific, which is not only sufficiently representative of the hemispheric background 
levels, but also responsive to the regional large-scale burning activities in Southeast Asia. 
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Development of Southeast Asia-Australian Atmospheric 
Observation Capability 

M. V. van der Schoot, B. Atkinson, P.J. Fraser, J. Ward, M. Keywood, P. B. Krummel 
 Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research 

 
In collaboration with a range of partners, Australia’s Centre for Australian Weather and Climate 

Research (CAWCR) at CSIRO Marine and Atmospheric Research, is developing an integrated 
atmospheric observation network for greenhouse gases (GHG) and other climatically-active 
atmospheric species in the Southeast Asia-Australian region. This network is an extension of the 
Australian Greenhouse Gas Observation Network (AGGON) which has the Cape Grim Baseline Air 
Pollution Station (CGBAPS) as the central reference site. CGBAPS is a Global Atmospheric Watch 
(GAW) global station and one of only three designated “comparison” sites for GHG in the network. 

The objectives of the expansion of the AGGON network are to: 

1. Establish a continental Australian network to develop “top-down” emission verification 
tools (e.g. Australian coal seam gas fugitive emissions applications); 

2. Understand key atmospheric processes in the Australian-Southeast Asian tropical region; 
3. Quantify the changing Southern Ocean CO2 sink, and 
4. Exploit new research platforms – Australian blue water research vessel RV Investigator 

(expected to be operational early 2014) 

Understanding the globally significant tropical atmospheric processes is a key focus of this 
research activity and therefore the expansion of the research capability in this region is an 
important step. 

Currently the Southeast Asia-Australian tropical regional network includes two GAW global 
stations (Bukit Kota Tabang, Indonesia and Danum Valley, Malaysia) as well as more than ten other 
air sampling sites for GHG (Figure 1).  

The main Australian contribution to this network is the development of the Australian Tropical 
Atmospheric Research Station (ATARS) at Gunn Point in Australia’s Northern Territory – a GAW 
regional station in the Australian tropical savannah region (Figure 2). In the dry season (Austral 
winter) the prevailing synoptic easterly winds expose this site to the significant biomass burning 
events that regularly occur in the large expanse of the Australian tropical savannah. In the monsoon 
season (Austral summer) the Gunn Point site is exposed to air masses originating from the 
Southeast Asian region.  
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Figure 1. Southeast Asia-Australian tropical regional GHG observation network 

 

Figure 2. Gunn Pt site with new 2nd container laboratory 

 

The research program at Gunn Pt ATARS has developed significantly over the last year (Table 1) 
with significant expansion of the available laboratory space with a new 2nd container laboratory, 
and the installation of new equipment. This includes the installation of: a GC-ECD system to study 
short-lived halocarbons from marine biogenic sources (University of Cambridge, UK); an 
automatic weather station (AWS), and an Aerosol Diffusion Dryer (ARADD) system including 
ambient MET sensors on tower and an ultra-Dry 10Bar compressed air system. 

An example of the data collected so far from the Gunn Pt site is shown in Figure 3 showing the 
time series of a range of greenhouse and related traces gases and isotopes from the flask air sample 
collection program. These results can be compared with the time series that have been collected at 
Cape Ferguson (East coast of Australia) (Figure 3).  
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Table 1. Gunn Point ATARS atmospheric measurement program 

Atmospheric species / technique  Research Group Period of 
Operation 

In-situ CO2 & CH4 (CRDS) CAWCR/CMAR (2011 - present) 

In-situ 13CO2/12CO2 (CRDS) CAWCR/CMAR (2011-2012) 

Flask CO2, CH4,13CO2/12CO2, N2O, CO, H2 CAWCR/CMAR (2011 – present) 

Radon-222 ANSTO (2011 – present) 

Short-lived halocarbons 
(CHBr3/CH2Br2/CHCl3/C2Cl4/CH2CCl3/CCl4..) GC-ECD 

University of 
Cambridge (UK) 

(Jul 2013 – 
present) 

Automatic Weather Station 

(with 2nd anemometer on tower since 2011) 

CAWCR/CMAR (Jul 2013 - 
present)  

O3 (UV spectrometry) CAWCR/CMAR (2011 – present) 

CO (NDIR) /NO/NOX (chemiluminescence) CAWCR/CMAR (2011-2012) 

Aerosols (nephelometer) CAWCR/CMAR (2011 – 2013) 

Aerosols (absorption photometer) CAWCR/CMAR (2011 – 2012) 

Proposed measurement program (NEW container lab) 

In-situ CO/N2O (Off-axis ICOS) CAWCR/CMAR (May/June 2014)

CO/NO/NOX CAWCR/CMAR (May/June 2014)

PM2.5/PM10 CAWCR/CMAR (May/June 2014)

Aerosols & VOCs CAWCR/CMAR (May/June 2014)
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Figure 3. Flask air samples trace gas time series for Gunn Pt (left panel) and Cape Ferguson (right 
panel). 

 

The future plans for the development of the Gunn Pt site involve conducting a number of research 
campaigns at the site and further engagement with regional sampling sites, including inter-comparison 
activities. In May/June 2014 the “Savannah Early Dry Season Fire Experiment” will be conducted 
over a one month period. An accompanying campaign in the late dry season will also follow. The 
main objective of these experiments is to study the ageing of aerosols in biomass burning smoke 
plumes. The “Northern Australia Biomass Burning Experiment” (NABBEx) is also planned in the 
period 2016/17, which will include measurement programs onboard the new Australian RV 
Investigator research ship. Other plans include greater engagement with the Total Column Carbon 
Observing Network (TCCON) site located nearby in Darwin and to investigate vertical profiling 
experiments for GHG at the Gunn Pt site. 
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Baring Head observations 

Located on a south facing cliff on the southern coast of the North Island (41.4083° S, 174.8710° E) 
New Zealand, the NIWA operated Baring Head (BHD) monitoring station began observations of CO2 
in 1972 and is ideally situated to observe air masses that have not been in contact with terrestrial 
sources for thousands of kilometers and multiple days [1].Observations have always been made with 
direct ties to the central calibration laboratories to ensure compatibility with observations made 
elsewhere. A site specific filtering process is used to ensure that local topography and air flows are 
considered when selecting what is regarded as background, or baseline air representative of mid-
latitudes of the southern hemisphere. Filtering avoids air that has arrived at the site from the north, 
and excludes air that has been in contact with the South Island based on pressure differences between 
the east and west coasts. The full time-series is depicted in Figure 2, in black, and the filtered stable 
background data are shown in red. 

Figure 2. CO2 time series from BHD, black points are hourly averages for all directions while red are 
stable background, steady southerly periods where the variations are less than 0.1 ppm in a 6 hour period. 
 

Footprints for the air arriving at Baring Head are developed using the high resolution Lagrangian 
model NAME III, where we release particles at the site and determine their trajectories “back in time” 
using meteorological input from the regional forecast model NZLAM-12. Clusters (Figure 3) can be 
formed from these particle trajectories, here we have characterized seven dominant clusters for the 
released particles. A southerly trajectory is shown to predominantly avoid local land areas, it is air 
from this cluster that is least perturbed by local effects for CO2 and forms the majority of the 
background air data. 
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Figure 3.CO2 footprint for air arriving at BHD using NAME III over a two year period. A 1-σ band for 

the trajectory spread is shown for this southerly cluster. 
 

Time-series 
We employ a seasonal time-series decomposition by Loess (STL) routine (Cleveland et al 1990) to 

interpret the 40 year time-series, and determine a seasonal amplitude of 0.95 ppm and a long-term 
growth rate (Figure 4) of 1.5 ppm yr-1 with and increasing trend with time. During the last decade 
(2000-2009), we note a difference between BHD and, Scripps Institution of Oceanography at, Mauna 
Loa of -3.03 ppm primarily as a result of fossil fuel usage in the north hemisphere. A difference 
between BHD and South Pole over the same period of -0.05 ppm is an indication of the removal 
processes of the Southern Ocean between Antarctica and New Zealand. 
 

 
Figure 4. CO2 growth rate determined for Baring Head over a 40 year period.  
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By utilizing tagged tracer simulations from the fine grid version of Transport Model version 3 
(TM3) [3], we are able to infer contributions of sources from different geographic regions to the 
seasonal cycle [4]. The simulations (Figure 5) use CarbonTracker-2010 fluxes [5] and were run from 
2000-2009 with the first three years discarded to allow for spin-up. The atmospheric imprint of the 
southern hemisphere ocean flux at Baring Head has a peak in the autumn (May) and a trough in the 
early summer (Dec). While the northern hemisphere terrestrial flux influence at BHD is lagged by 
about six months due to transport time and has a phase and magnitude close to that of the southern 
hemisphere terrestrial flux, with peaks in late winter (Aug-Sep) and troughs in autumn (Mar-Apr).  

 

Figure 5. Output from a tagged tracer experiment was the observations are plotted as circles. The TM3 
model seasonal cycle is of the similar magnitude as the observations however the phase is advanced 

by one month. 
 

Summary 
A 40 year in situ record of atmospheric CO2 has been acquired from the Baring Head site, this has 

proven to be an effective location for the observation of baseline air. When the time-series has been 
examined a long-term growth rate of 1.5 ppm yr-1 has been determined with a mean peak to peak 
seasonal cycle of 0.95 ppm. Air mass origins or footprints have been modeled using NAME and 
trajectory clusters determined that demonstrate the effectiveness of the site to make observations of 
mid-latitude southern hemisphere air. A tagged tracer model simulation has provided insight into the 
components contributing to the seasonal cycle and their potential phasing. Further work is required to 
ensure the continued compatibility of observations with other network stations. 
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Gravimetric standards of Greenhouse gases at ambient levels 

JeongSik Lim1, Jin Bok Lee1, Haeyoung Lee2,Dong Min Moon1,Miyeon Park1, A-rang Lim1, Jeong 
Soon Lee1,* 

1. Center for gas analysis, Korea Research Institute of Standards and Science 

2. Korea Meteorology Administration 

 
1. Introduction 
 

The Global Atmosphere Watch (GAW) Programme of the World Meteorological 
Organization (WMO) serves as an international framework aimed at maintaining the traceability chain 
for Greenhouse Gases observation passing through the Central Calibration Centre (CCL) and World 
Calibration Centre (WCC). The Korea Research Institute of Standards and Science (KRISS) and the 
Korea Meteorology Administration (KMA) agreed to host WCC-SF6(World Calibration Center for 
SF6) and started to improve the analytical capability of SF6.[1] 

In this newsletter, we present new gravimetric standard scales of SF6 for supporting WCC 
task. Furthermore, N2O scale will be introduced. Each standard was developed according to the ISO 
6142. [2] And the uncertainties of prepared cylinders are individually evaluated to meet virtually no 
errors on the regression of the sets of standards covering ambient levels. We hope this primary scale 
will contribute to strengthen the WMO traceability chain. Therefore, the comparison of KRISS and 
NOAA scale is planned in order to ensure the equivalence between them. Before leaving this letter, 
the comparison of CO2, CH4 standard will be also introduced to report the deviation between KRISS 
and NOAA standards. 

 

2. Primary standards developments 
  
2.1 Overview 
  

In this letter, we will present our recent achievements on new standards of N2O in air and 
SF6in air. Impurity analysis of pure gases of SF6, N2O, N2, O2 and Ar were performed and every 
dilution steps are gravimetrically controlled according to ISO 6142. Particularly, SF6 of which mixing 
ratio at atmospheric is pmol/mol, careful investigation on SF6 impurity in air matrix was rigorously 
carried out to pick out sub-ppt level of SF6, which provides slightly positive bias on the certified 
mixing ratio. For this purpose, the pre-concentrator-GC-ECD was brought to ensure the SF6 trace in 
matrix. To verify dilution steps, analyses were performed using KRISS-calibrated gas chromatograph 
with thermal conductivity detector or electron capture detector (GC-TCD and ECD, respectively) 
according to ISO 6143.[3] For SF6/air scale, 5 cylinders were gravimetrically prepared as a function of 
mixing ratio in the range of ambient levels (5~15 pmol/mol). In case of N2O scale covering ambient 
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Intercomparison experiments for  

Greenhouse Gases Observation (iceGGO) in Japan 

M. Takahashi1, T. Nakazawa2, S. Aoki2, D. Goto2, K. Kato3, N. Aoki3, T. Watanabe3,  
T. Machida4, Y. Tohjima4, K. Katsumata4, S. Murayama5, S. Ishidoya5, S. Morimoto6,  

T. Fujitani7, H. Koide1, A. Takizawa1, H. Matsueda8, Y. Sawa8, K. Tsuboi8 
 

1. Japan Meteorological Agency, Tokyo, Japan, 2. Tohoku University, Sendai, Japan, 3.National Metrology 

Institute of Japan, Tsukuba, Japan, 4.National Institute for Environmental Studies, Tsukuba, Japan, 5.National 

Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, 6.National Institute of Polar Research, 

Tokyo, Japan, 7.Office for Coordination of Climate Change Observation, Tsukuba, Japan, 8.Meteorological 

Research Institute, Tsukuba, Japan 

 
1. Introduction 

Under the WMO GAW programme, the Japan Meteorological Agency (JMA) serves as the GAW 
World Calibration Centre (WCC) for CH4 in Asia and the South-West Pacific. In order to ensure 
traceability to GAW international standards and maintain the accuracy of the measurements, JMA has 
carried out CH4 reference gas intercomparisons since 2001, and three-intercomparisons have finished 
by 2013. 

In Japan, the intercomparison experiments named iceGGO (Inter Comparison Experiments for 
Greenhouse Gases Observation) started in 2012 through collaboration among observation laboratories 
and the national metrology institute. IceGGO-1 (CH4) is one of these intercomparison experiments. 
The purposes of this intercomparison experiment are to compare the CH4 standard gases used by 
observation laboratories with the SI traceable standard gases and to clarify the detailed differences of 
the standard gases with a wide range of CH4 mole fractions.IceGGO-1 (CH4) was conducted in 
combination with the 3rd round CH4 reference gas intercomparison conducted by the GAW WCC in 
Asia and the South-West Pacific. 

 

2. CH4 reference gas intercomparison in Asia and the South-West Pacific. 
Table 1 shows the overview of the 1st - 3rd rounds CH4 reference gas intercomparisons conducted 

as the activity of WCC for CH4 in Asia and the South-West Pacific. In these intercomparisons, two 
standard gases prepared by using purified natural air and pure CH4 gas were circulated in Asia, the 
South-West Pacific and Japan. JMA and following ten observation laboratories from five countries 
(Australia, China, Japan, Korea and New Zealand) participated, namely China Meteorological 
Administration (CMA), Commonwealth Scientific and Industrial Research Organization (CSIRO), 
Korea Meteorological Administration (KMA), Korea Research Institute of Standards and Science 
(KRISS), Meteorological Research Institute (MRI), National Institute for Environmental Studies 
(NIES), National Institute of Advanced Industrial Science and Technology (AIST), National Institute 



 

 

46 
 

of Polar
Tohoku 

 

Intercom
Rou

1s

2n

3r

 
Figure

laborato
The con
figures. 
Laborato
from the
show th
1st to th
NOAA0

Figure 1
CH4 refe

 

r Research (
University (

Table 1. 

mparison 
und Int

st 200

nd 200

rd 200

e 1 and figu
ories which p
ncentration dr

JMA has us
ory) of NOA
e values mea
at the differe

he 3rd round,
04 scale (Tab

1. Difference
erence gas in

Asia-P

(NIPR), Nati
TU). 

Overview o

Period of  
tercomparison

01.04 - 2005.0

05.07 - 2010.0

08.05 - 2013.0

ure 2 show th
participated i
rifts of the st
sed the WMO
AA since 200
asured by us
ences of mea
 and it seem

ble 2). 

es of measur
ntercomparis

Pacific GAW G

ional Institut

f the 1st - 3rd

n 

03 JMA,

01 JM
C

02 JMA, KR
NI

he difference
in the 1st - 3
tandard gase
O mole fract

06, so some o
sing JMA sca
asured CH4

s to be presu

red CH4 mol
ons (left: 1st

Greenhouse G

te of Water 

d rounds CH

Particip

, CMA, KMA
TU, N

MA, CMA, K
CSIRO, NIWA

RISS, KMA, C
IPR, AIST, M

es of measu
3rd rounds C
s used in the
tion scale pr
of JMA’s val
ale for the ad
mole fractio

umably cause

le fraction fr
t round, right

Gases Newslett

& Atmosph

H4 reference g

pants 

A, CSIRO, NIW
NIES 
KMA, KRISS,
A, NIES, TU
CMA, CSIRO,

MRI, NIES, TU

red CH4 mo
CH4 reference
ese intercomp
ropagated fro
lues used in 
doption of th

ons were gra
ed by an incr

rom those of
t: 2nd round)

ter  Volume N

heric Researc

gas intercom

of c

WA,  

 

, NIWA, 
U 

ole fractions 
e gas interco
parisons wer
om the CCL
figure 1 wer
he NOAA04
dually reduc
rease in the l

f JMA in the
). 

No. 4, 2013 

ch Ltd. (NIW

mparisons. 
CH4 mole frac

circulated two 
gases [ppb
1800, 195

1700, 187

1665, 185

between obs
omparisons a
re considered

L (Central Ca
re recalculate
4 scale. Thes
ced in order 
laboratories u

e 1st and 2n

WA) and 

ctions  
standard 
b] 

50 

75 

50 

servation 
and JMA. 
d in these 
alibration 
ed values 
se figures 
from the 
using the 

 
nd rounds 



 

Figure 2
referenc
 
Table 2.
referenc

Intercom
ro

1

2

3
Intercom

ro
1
2
3

 
In the

laborato
hand, th
tendency
at the lo
fraction 
CH4 mo
CH4 refe
CH4 mo
 

3. Inter
In har

observat

Asia-Pac

2. Differenc
ce gas interco

 Standard ga
ce gas interco
mparison 
und 

1st N

2nd N

3rd N
mparison 
und 

1st 
2nd 
3rd 

e result of t
ory using the
he difference
y, and the dif

ower CH4 mo
were about 

ole fraction in
erence gas in
le fractions. 

rcompariso
rmony with 
tion laborato

cific GAW Gre

es of measu
omparisons. 

as scales used
omparisons 

JMA 

NOAA04 

NOAA04 

NOAA04 

NIES 

NIES94 
NIES94 
NIES94 

the 3rd roun
e NOAA04 s
s between ea
fferences at t
ole fraction (
+4 ppb. Thi

ncreases. In 
ntercomparis

on experim
the WMO/B

ories in Japa

eenhouse Gase

ured CH4 m

d in JMA an

CMA 

AES 

AES 

NOAA04 

KRISS 

 
KRISS 
KRISS 

nd, the diffe
scale and JM
ach laborator
the higher CH
(1665 ppb) i
is result sug
order to clar

son by using

ents for Gr
BIPM coope
an have estab

es Newsletter 

mole fraction 

nd ten laborat

KMA 

CMDL 

KRISS 

KRISS 

NIPR 

 
 

NIPR 

erences of m
MA range fro

ry not using 
H4 mole frac
n whole. Som

ggests that th
rify this tend
 the multiple

reenhouse G
eration in th
blished a na

 Volume No.

from those 

tories partici

CSIRO 

CSIRO1994

NOAA04

NOAA04

AIST 

 
 

AIST 

measured CH
om about -2 

the NOAA0
ction (1850 p
me of the di

hese differen
dency in deta
e standard ga

Gases Obse
he internation
ational allian

. 4, 2013 

of JMA in

ipated in the 

NIWA 

4 NIST 

NOAA04

NOAA04

MRI 
 
 

MRI 

H4 mole frac
to about +0

04 scale and 
ppb) tended t
fferences at 
ces may inc
ail, it is nece
ases which c

ervation (ic
nal commun
nce with the

 

n the 3rd rou

1st - 3rd rou

TU
TU Grav

Sca

4 TU Grav
Sca

4 TU-X

 

 
 
 

ctions betwe
0.5 ppb. On t

JMA had a 
to be larger t
the higher C
rease as the 
essary to con
cover a wide 

ceGGO) in 
nity, JMA an
 National M

 

47 

und CH4 

unds CH4 

U 
vimetric 
ale 
vimetric 
ale 
X08 

een each 
the other 
different 

than ones 
CH4 mole 

absolute 
nduct the 
range of 

Japan 
nd active 

Metrology 



 

  

48 Asia-Pacific GAW Greenhouse Gases Newsletter  Volume No. 4, 2013 
 

Institute of Japan (NMIJ), which is part of AIST, to compare standard gas scales each other. In the 
framework of this alliance, we started intercomparison experiments named iceGGO in 2012.IceGGO-
1 (CH4) is its first experiment, and was conducted in cooperation with the observation laboratories 
and the national metrology institute in Japan for the first time. 

Table 3 shows the overview of iceGGO-1 (CH4). In this experiment, seven laboratories participated, 
and six standard gases with a range of CH4 mole fractions from about 1665 ppb to about 2240 ppb 
were circulated from Oct. 2012 to Mar. 2013 in the following sequence: JMA, NIPR, AIST, MRI, 
NIES, TU and JMA again. Four of the six standard gases were prepared by using purified natural air 
as a diluent gas and pure CH4 gas. CH4 mole fractions in these standard gases ranged from about 1665 
ppb to about 1920 ppb. These gases were provided by JMA, and two of these gases were used for CH4 
reference gas intercomparison as the activity in the GAW WCC in Asia and the South-West Pacific. 
The other two standard gases were SI traceable, and were prepared by a gravimetric method of NMIJ 
using synthetic air (mixture of pure N2, O2 and Ar) and pure CH4 gas. CH4 mole fractions in these 
cylinders were about 1830 ppb and about 2240 ppb. These gases were prepared additionally at the 
time of CCQM-K82 intercomparison, which is the preparative comparison of CH4 in air at ambient 
level. 
 
Table 3.Overview of iceGGO-1 (CH4) 
Period of Intercomparison Oct.2012 - Mar.2013 

Participants JMA, NIPR, AIST, MRI, NIES, TU and NMIJ(7 participants) 

Detail of 
standard gases 

<4 cylinders> 
Provider: JMA 
CH4 mole fraction: about 1665 - 1920 ppb 
These cylinders were prepared using purified natural air and pure CH4 gas. 
 
<2 cylinders> 
Provider: NMIJ 
CH4 mole fraction: about 1830, 2240ppb 
These cylinders were prepared by a gravimetric method using synthetic air and pure
CH4 gas. 
CH4 mole fractions in these cylinders were SI traceable. 

 
Table 4 lists the standard gas scales and analytical methods used in seven laboratories that 

participated in iceGGO-1 (CH4). Figure 3 shows the differences in measured CH4 mole fractions from 
those of JMA at the beginning of circulation. The analytical precisions for all laboratories were around 
1-2 ppb, and the expanded uncertainties of NMIJ gravimetric values were 1.3 ppb (k=2). The 
differences of measured CH4 mole fractions of JMA between the end and the beginning of circulation 
were within the range of ±0.8 ppb. 

The plots in Figure 3 show a consistent dependency between the differences of measured CH4 mole 
fractions at each laboratory from JMA and the absolute CH4 mole fraction levels, although their 
values have systematic differences. Figure 4 shows differences of measured CH4 mole fractions from 
NMIJ gravimetric values. The differences except JMA were distributed within about ±3 ppb. 
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Current Activities of World Calibration Center for SF6 
Deullae Min1, Haeyoung Lee1, Bok-Heang Heo1, 

Dong Min Moon2, Jeong Sik Lim2, and Jeongsoon Lee2  

1. Korea Global Atmosphere Watch Center, Korea Meteorological Administration, 2. Center for Gas Analysis, 

Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science 

 
Sulfur hexafluoride (SF6), one of the important greenhouse gases regulated by Kyoto Protocol, has 

no natural sources and only comes from human related activities. Aluminum industry and 
semiconductor manufacturing are major emission sources of SF6, and electrical transmission 
equipment including circuit breakers are also emits SF6 in the atmosphere. In 1970s, the concentration 
of atmospheric SF6 was about 0.3 ppt [1], and reached 7.5 ppt in 2012 [2]. Many researchers report that 
there is a big gap between the emissions based on air measurements and estimated by the emission 
database [3],[4]. This shows that the reliable observation is important to verify the global and regional 
emissions of SF6. 

World Meteorological Organization / Global Atmosphere Watch (WMO/GAW) programme has a 
unique quality assurance (QA) system to provide reliable scientific data and information. This QA 
system is supported by five types of central facilities, including Central Calibration Laboratory (CCL), 
World / Regional Calibration Center (WCC/RCC), and so on. In the case of greenhouse gases 
including SF6, Earth System Research Laboratory / Global Monitoring Division (ESRL/GMD) of 
National Oceanic and Atmospheric Administration (NOAA) plays an important role as a CCL. In 2012, 
based on the considerable experience in the field of quality assurance and quality control for the 
analysis of atmospheric SF6, Korea Meteorological Administration (KMA) was designated as WCC 
for SF6 (WCC-SF6) by signing the Memorandum of Understanding (MoU) with WMO. To improve 
the greenhouse gases measurement technique, KMA has cooperated with Korea Research Institute of 
Standards and Science (KRISS), the national metrology institute of Korea, since 2002. Using the 
advanced measurement technique of KRISS, KMA started to monitor atmospheric SF6 in its Korea 
GAW Center (KGAWC) located in Anmyeondo in 2007.  

According to the MoU between WMO and KMA, KGAWC/KMA has its own important missions 
as WCC-SF6, such as to develop and to publish quality control procedures required to support the 
quality assurance of measurements; to prepare and maintain laboratory standards traceable to the WMO 
reference scale; to perform intercomparison campaigns, system/performance audits, and to provide a 
training and long-term technical help for those who work for WMO/GAW stations. To implement of 
its own missions, WCC-SF6 established several systems for preparing laboratory and transfer standard 
gas mixtures, including polish treated aluminum cylinders and cylinder evacuation system, LIX air 
compressor, sampling and mixing systems to prepare the dry compressed air. A gas chromatograph with 
micro electron capture detector (GC/μECD) is used for SF6 analysis, which is calibrated with five 
standard gas mixtures linked to the NOAA-2006 SF6 scale.    
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Figure 1. System and condition for SF6 analysis (left) and its chromatogram (right) 
 

To ensure that the reference scale which is maintained at WCC-SF6 is traceable to the WMO 
reference scale, the first intercomparison between CCL for greenhouse gases and WCC-SF6 has been 
conducted in early 2013. Dry compressed air in 6 L aluminum cylinders were used as gas samples for 
this experiment, and those nominal values of SF6 concentration were 6 and 8 ppt. To analyze SF6 in 
gas samples, a 4 m length of activated alumina F-1 (80/100 mesh) packed column (Restek, USA) was 
installed in the GC/μECD (Agilent 7890N, China). Gas samples were injected to the GC by the Valco 
6-port sampling valve with a sample loop with 6 mL volume. More detailed system for SF6 analysis 
and its chromatogram are shown in Figure 1. The limit of detection (3 S/N) of this measurement 
condition was approximately 0.15 ppt. 

In this experiment, four standard gas mixtures were used to make sure of the linear range in the 
GC/μECD and to apply the multi-point calibration method to the analysis result. To correct the 
instrumental drift during the measurement, we employed one working standard (WS) gas contained 
dry compressed air with ambient level of SF6. The working standard gas was analyzed every before 
and after standard (STD6, STD8, STD10, and STD12) and sample (SPA and SPB) gases measurement, as 
shown in Table 1. From this A-B-A’ method, the response ratio of each standard and sample gas 
against the working standard gas were obtained. Figure 2 shows the non-linear response curve of the 
GC/μECD in the range of 6 ppt to 12 ppt. 

 

 

Table 1. Response ratios of standard and sample gases against the working standard gas 

Gas mixture WS SPA WS STD8 WS SPB WS 

Peak height 6.883 5.553 6.854 6.700 6.910 6.631 6.907 

Response ratio* / 0.8085 / 0.9735 / 0.9599 / 

Gas mixture STD6 WS STD10 WS WS STD12 WS 

Peak height 4.982 6.909 8.062 6.857 6.836 9.877 6.868 

Response ratio 0.7212 / 1.1713 / / 1.4414 / 
* Response ratio of SPs and STDs = 2  SP(or STD) / (WS + WS’) 
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As shown in Figure 2, the 
GC/μECD used in WCC-SF6 has a 
non-linear response curve in the 
corresponding range. So it would be 
ideal to calibrate the GC using more 
than four standard gases at every 
measurement, but it consumed too 
much time and could be affected by 
unexpected instrumental drift during 
the measurement. Therefore, we 
would like to suggest the best 
calibration method by calculating the 
concentration of one sample (SPB) gas in difference calibration situations. SF6 concentration of sample 
B (SPB) which applies multi-point calibration (multi4p) using four standard gas mixtures was 7.854 ppt. 
This value was used as a reference value to compare each concentration value from various 
calibration situations. As shown in Table 2, as expected, any values calculated using STD8 showed 
good results. Single point calibrations using STD6 or STD10 were all valid as well. In some cases 
which apply single point calibration using STD12 and two point calibration using STD6 and STD12 
showed big biases in the SPB measurement. Based on this result, the two-point calibration method was 
applied to this experiment to obtain accurate measurement results. 

Table 3 shows the measurement result from WCC-SF6 for the intercomparison. Duplicate 
measurements by two-point calibration method (STD6 and STD8) were performed, and a multi-point 
calibration method (using four standard gases from 6 ppt to 12 ppt) was applied to only one result (the 
third measurement). As shown in the table, SF6 concentrations measured by WCC and CCL were 
agreed well within 0.034 ppt. This difference is slightly higher than the WMO recommended 
measurement target for SF6, but these two measured value were within their measurement uncertainty 
(standard deviation) each other. 

 
Table 2. Calculated SF6 concentration of sample B from difference calibration situations    (unit: ppt) 

Single-point 
calibration 

Standard gas STD6 STD8 STD10 STD12 

SF6 concentration of SPB 7.879 7.861 7.863 7.916 

Difference (Single-Multi4p) 0.025 0.007 0.009 0.062 

Two-point 
calibration 

Standard gas STD6, STD8 STD8, STD10 STD6, STD10 STD8, STD12

SF6 concentration of SPB 7.861 7.860 8.869 7.898 

Difference (Two-Multi4p) 0.007 0.006 0.015 0.044 

Three-point 
calibration 

Standard gas STD6, STD8, and STD10 STD8, STD10, and STD12 

SF6 concentration of SPB 7.861 7.862 

Difference (Multi3p-Multi4p) 0.007 0.008 

Figure 2. Response curve of GC used at WCC-SF6 
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Table 3. Measurement result of two sample gases for the intercomparison                (unit: ppt) 

Sample 
Number of measurements WCC 

[SD*] 
CCL 
[SD] 

Difference 
(WCC-CCL)1 2 3 4 5 

SPA 6.651 6.649 6.629 6.636 6.612 
6.635 

[0.016]
6.633 

[0.012] 
+0.002 

SPB 7.841 7.833 7.851 7.828 7.901 
7.851 

[0.029]
7.885 

[0.019] 
-0.034 

* SD: Standard Deviation 

 
Based on these well established infrastructures and advanced measurement techniques for SF6, 

WCC-SF6 will implement several long-term plans, such as to prepare operation procedures to 
maintain laboratory standard gases traceable to the WMO reference scale; to develop the 
measurement guideline for SF6 observation in cooperation with KRISS; to provide the technical 
training course for GAW stations to enhance their capability building for SF6 observation; to conduct 
intercomparison campaigns and system and performance audits for stations to improve the quality of 
observation data; and to expand the SF6 observation network including the in-situ and/or flask 
sampling analysis supported by several funding sources. 
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